Helical Microphase-Separated Structures formed from Multiblock Copolymers

Kyoka Kusano, Tsuyoshi Orido and Atsushi Takano

Research Institute for Quantum and Chemical Innovation, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

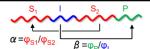
Hexagonally-packed double-stranded helical domain structure having a homochiral single row but with alternating chirality inversion was observed from a tetrablock terpolymer of the S_1IS_2P type, where S, I and P denote polystyrene, polyisoprene and poly(2-vinylpyridine), respectively.

SISP tetrablock terpolymer was synthesized by a living anionic polymerization.[1],[2] Molecular characteristics for the S_1IS_2P terpolymer are summarized in Table 1, and two kinds of

structure parameter are used as $\alpha (=\phi_{S1}/\phi_{S2})$ and $\beta (=\phi_P/\phi_I)$, where ϕ_{S1} , ϕ_{S2} , ϕ_P and ϕ_I are volume fractions of components S_1 , S_2 , P and I, respectively.

Figure 1a and 1b show the 2D-TEM image and 3D-reconstructed image of I domains stained selectively by OsO₄, respectively, it has been confirmed that the I domains have double-stranded helical structure. While from the 2D-TEM image of P domains stained selectively by I₂ as shown in Figure 1c, it has been confirmed that P domains have hexagonally-packed helical structure. Summarizing these experimental facts, it has been confirmed that the SISP terpolymer

shows hexagonally-packed structures having helical domains of P component surrounded with double-stranded helices of component I embedded in the matrices of component S as shown in Figure 1d. Figure 2 reveals a 3 dimensional reconstructed image of the SISP terpolymer by TEM tomography, in which the blue helices are right-handed double helix and the red helices are left-handed ones. This image clearly shows that helices in one row is homogeneous, however handedness is totally inverted in the adjacent row and so on.


References

- [1] Y. Miyamori, et al., ACS Macro Lett. **2020**, 9, 32–37
- [2] Y. Miyamori, et al., ACS Macro Lett. 2021, 10, 978–983

Table 1 Molecular characteristics of tetrablock terpolymer.

Sample	10 ⁻³ M _n ^a	Volume fraction ^b				- N.A. (N.A. C.		
		S ₁	I	S_2	Р	M _w /M _n ^c	α	β
S ₁ IS ₂ P	119	0.657	0.114	0.053	0.176	1.04	12.5	1.53
® Determined by SEC-MALS and 1H NMP						1	Sa	Р

- a Determined by SEC-MALS and 1H NMI
- ^b Estimated from ¹H NMR.
- ^c Measured from SEC.

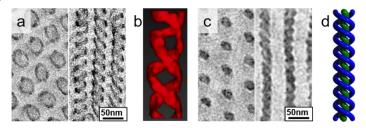


Figure 1. (a) TEM images of I domain stained by OsO₄, (b) 3D TEM images of I domain, (c) TEM images of P domain stained by I₂, (d) Schematic drawing of I/P domains.

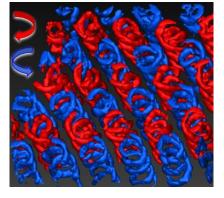


Figure 2. A projected view of a 3D-constracted image. The right-handed helices are painted with blue, while the left-handed helices are in red